Применение новейших экономико-математических методов для решения задач
| Категория реферата: Рефераты по экономико-математическому моделированию
| Теги реферата: шпоры по социологии, какой ответ
| Добавил(а) на сайт: Hlebov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
рис.4.
Если полученные значения следует отразить на листе электронной таблицы, то надо кликнуть на кнопке ОК, если же нет – то на кнопку
Отмена. В первом случае найденные значения зафиксируются в клетках В5 и
С5.
Численные методы решения хороши тем, что можно получить приближенное решение с заданной точностью. EXCEL имеет возможность управлять выбором точности. Для этого надо выполнить команду Сервис/Параметры/Вычисления и в соответствующих полях установить значения относительной погрешности и количества итераций(рис.5.).
рис.5.
1.2 Системы двух нелинейных алгебраических уравнений.
Задание #2
Вышеизложенный способ получения решения уравнения может быть легко распространен для случая решения системы двух уравнений с двумя неизвестными, если система имеет следующий вид:
Y=Ф(x)
Y=?(x) (3)
Преобразуем систему (3) в одно уравнение вида (4):
Ф(x)- ?(x)=0 (4)
Полученное уравнение уже можно решить с помощью Подбор параметра… так как
это было описано выше.
Рассмотрим нахождение равновесной цены и объема продаж для рынка некоторого товара.
Пусть функция спроса на товар имеет вид Qd=80e-0.05p-20, 0?p?30, а функция предложения Qs=12p-3e0.02p, 0?p?30.
Найти равновесные цену и объем, построить графики спроса и предложения. Имеющуюся систему уравнений
Qd=80e-0.05p-20
Qs=12p-3e0.02p преобразуем в одно уравнение вида 80e-0.05p-20 - 12p+3e0.02p=0.
Подбор параметра… описанным выше, находим равновесную цену, она равна
4,049213, подставив это значение в одно из уравнений системы. Получим и
значение равновесного объема - 45,33749 . Для построения графика, иллюстрирующего ситуацию равновесия спроса и предложения на рынке, воспользуемся знанием равновесной цены и возьмем значения в некоторой
окрестности от нее. Получим следующую иллюстрацию решения задачи о
равновесии на рынке (рис.6.).
рис.6.
Глава №2 Матричная алгебра
Матричная алгебра тесно связана с линейными функциями и с линейными
ограничениями, в связи, с чем находит себе применение в различных
экономических задачах:
. в эконометрике, для оценки параметров множественных линейных регрессий;
. при решении задач линейного программирования;
. при макроэкономическом программировании и т.д.
Особое отношение к матричной алгебре в экономике появилось после создания
моделей типа «Затраты-Выпуск», где с помощью матриц технологических
коэффициентов объясняется уровень производства в каждой отрасли через связь
с соответствующими уровнями во всех прочих отраслях.
Электронная таблица EXCEL имеет ряд встроенных функций для работы с
матрицами:
ТРАНСП – транспонирование исходной матрицы;
МОПРЕД – вычисление определителя квадратной матрицы;
МОБР – вычисление матрицы обратной к данной;
МУМНОЖ – нахождение матрицы, являющейся произведением двух матриц.
Кроме того, возможно выполнение операций поэлементного сложения
(вычитания) двух матриц и умножения (деления) матрицы на число.
На примере проиллюстрируем некоторые из этих функций. Найдем сумму двух матриц А(5*4) и В(5*4) и транспонируем матрицу-результат.
2.1 Сложение матриц
Рекомендуем скачать другие рефераты по теме: детские рефераты, мировая экономика.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата