Задачи графических преобразований в приложениях моделирования с использованием ЭВМ
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: изложение дубровский, скачать реферат на тему
| Добавил(а) на сайт: Привалов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
(2.11)
Рис. 4
Рис. 5
Рис. 6
Рис. 7
Выбор этих четырех частных случаев определяется двумя обстоятельствами.
1. Каждое из приведенных выше преобразований имеет простой и наглядный геометрический смысл (геометрическим смыслом наделены и постоянные числа, входящие в приведенные формулы).
2. Как известно из курса аналитической геометрии, любое преобразование вида (2.1) всегда можно представить как последовательное исполнение
(суперпозицию) простейших преобразований вида 1 – 4 (или части этих преобразований).
Таким образом, справедливо следующее важное свойство аффинных преобразований плоскости: любое отображение вида (2.1) можно описать при помощи отображений, задаваемых формулами (2.3) – (2.11).
Для эффективного использования этих известных формул в задачах компьютерной графики более удобной является их матричная запись. Матрицы, соответствующие случаям 1 – 3, строятся легко и имеют соответственно следующий вид:
cos ? sin ? ? 0 1 0
-sin ? cos ? 0 ? 0 -1
3. Однородные координаты точки
Пусть М – произвольная точка плоскости с координатами х и у, вычисленными относительно заданной прямолинейной координатной системы.
Однородными координатами этой точки называется любая тройка одновременно не
равных нулю чисел х1, х2, х3, связанных с заданными числами х и у
следующими соотношениями:
x1 / x3 = x, x2 / x3 = y
(3.1)
При решении задач компьютерной графики однородные координаты обычно вводятся так: произвольной точке М (х, у) плоскости ставится в соответствие точка МЭ (х, у, 1) в пространстве.
Необходимо заметить, что произвольная точка на прямой, соединяющей начало координат, точку О (0, 0, 0), с точкой МЭ (х, у, 1),может быть задана тройкой чисел вида (hx, hy, h).
Будем считать, что h = 0. Вектор с координатами hx, hy, h является
направляющим вектором прямой, соединяющей точки О (0, 0, 0) и МЭ (х, у, 1).
Эта прямая пересекает плоскость z = 1 в точке (х, у, 1), которая однозначно
определяет точку (х, у) координатной плоскости ху.
Тем самым между произвольной точкой с координатами (х, у) и множеством троек чисел вида (hx, hy, h), h = 0, устанавливается взаимно однозначное соответствие, позволяющее считать числа hx, hy, h новыми координатами этой точки.
Широко используемые в проективной геометрии однородные координаты позволяют эффективно описывать так называемые несобственные элементы (по существу, те, которыми проектная плоскость отличается от привычной евклидовой плоскости).
В проективной геометрии для однородных координат принято следующее обозначение:
х : у : 1
(3.2)
Рекомендуем скачать другие рефераты по теме: реферат рф, банк рефератов и курсовых.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата