Численные методы
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные работы 9 класс, шпаргалки по экономике
| Добавил(а) на сайт: Карев.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22
(22) Совершенно àíàëîãè÷íî при услвии, что с использованием формул (7), (14) получается усложненная квадратурная формула трапеций
(23)
и отвечающая ей формула с остаточным членом
(24)
где некоторая точка.
Пусть теперь и, как обычно, Перепишем каноническую квадратурную формулу Симпсона (15) применительно к отрезку длины :
Суммируя левую и правую части этого соотношения от 0 до
N-1, получаем усложненную квадратурную формулу Симпсона (25)
Сответствующая ей формула с остаточным членом, полученная суммированием по частичным отрезкам равенств вида (18), при условии, что , такова :
(26)
где
Введем краткие обозначения
(27)
где а также положим
(28)
где
Приближенные равенства
(29)
(30)
назовем сответственно формулами прямоугольников, трапеций и формулой Симпсона, опуская слова ‘’усложненная квадратурная’’.
Из виражений остаточных членов в (22), (24), (26) видно, что формулы (29) прямоугольников трапеций точны для многочленов первой степени, т.е. для линейных функций, а формула (30) Симпсона точна для многочленов третьей степени (для них остаточный член равен нулю ). Погрешность формул (29) имеет второй порядок относительно (заведомо не лучше, если непрерывна на и не обращается в нуль), а формула Симпсона при соответствующей гладкости является формулой четвертого порядка точности. Поэтму для функций класса при малом формула Симпсона обычно дает более высокую точность, чем формула (29).
Погрешность формулы прямугольников и формулы Симпсона при вычислении интеграла (1) в силу (22), (26) удовлетворяет неравенствам
(31)
(32)
Аналогичное неравенство имеет место и для погрешности формули трапеций.
Наряду с оценками погрешноси сверху полезны оценки снизу. В частности, для погрешности формулы прямоугольников оценка снизу, вытекающая из (22), такова:
(33)
Пример. Исследовать погрешность квадратурных формул для интеграла
при .
Имеем
о
на
Согласно (31)-(33) получаем
Формулы прямоугольников трапеций в отдельности уступают при интегрировании гладких функций формуле Симпсона. Однако в паре они обладают ценным качеством, а именно, если не изменяет знака на то формулы (29) дают двусторонние приближения для интеграла (1), так как согласно (22), (24) их остаточные члены имеют противоположные знаки.
В рассмотренном примере Поэтому
В данной ситуации естественно положить
Тогда т.е. погрешность оценивается через самые приближенные значения интеграла.
Скачали данный реферат: Zarema, Martiniana, Дормидбнт, Бысов, Jakutkin, Karjukin.
Последние просмотренные рефераты на тему: чс реферат, доклад, бесплатно реферат на тему, население реферат.
Категории:
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22