Численные методы
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные работы 9 класс, шпаргалки по экономике
| Добавил(а) на сайт: Карев.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
у которой по сравнению с матрицей переставлены l -я и (k-1 )-я строка l-й и ( k-1)- й стодбец. В результате на необходимом нам месте оказывается ненулевой элемент , уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице . Она подбна матрице (и, следовательно, исходной матрице А ), т.к. елементарная матрица перестановок совпадает со своей обратной, т.е.
Рассмотрим второй нерегулярный случай, когда в матрице ýлемент и все элементы этой строки, которые тоже находятся левее его, тоже равны нулю. В этом случае характеристический определитель матрицы можно представить в виде
где і - единичные матрицы соответствующей размерности, а квадратные матрицы и имееют вид:
Обративм внимание на то, что матрица уже нормальную форму Фробениуса, и поэтому сомножитель просто развертывается в виде многочлена с коэффциентами, равными элементам первой строки.
Сомножитель , åñòü характеристический определитель матрицы . Для развертывания можн опять применять метод Данилевского, приводя матрицу подобными преобразованиями к нормальной форме Фробениуса.
Предположим теперь, что матрица А подобным преобразованиям
уже приведена к нормальной форме Фробениуса. Решая характеристическое уравнение
,
находим одним из известных методов его корни которые являются собственными значениями матрицы Р и исходной матрицы А.
Теперь стоит задача отыскать собственные векторы, соответствующие этим собственным значениям, т.е. векторы такие, что
Решим ее следующим образом: найдем собственные векторы матрицы Р , а затем по определенному соотношению я пересчитаем собственные векторы матрицы А . Это соотношение дает следующая теорема.
ТЕОРЕМА. Пусть є есть собственное значение , а есть соответствующий собственный вектор матрицы Р , которая подобна матрице А ,т.е.
Тогда есть собственный вектор матрицы А , соответствующий собственному значению
Доказательство.Тривиально следует из того, что
Домножая левую и правую часть этого равенства слева на S ,
имеем
А это и означает, что -собственный вектор матрицы А ,
отвечающий собственному значению
Íàéäåì ñîáñòâåííûé вектор матрицы Р , которая имеет нормальную форму Фробениуса и подобна матрице А. Записывая в развернутой форме, имеем
Рекомендуем скачать другие рефераты по теме: ответы школа, свобода реферат.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата