Численные методы
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные работы 9 класс, шпаргалки по экономике
| Добавил(а) на сайт: Карев.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата
(11)
Тогд, так как то
и, следовательно,
Если то и в качестве можн взять любую точку из
Если то вытекает существование такого числа с, удовлетворяющего неравенствам ( для этого делим все части на ):
(12)
что
(13)
По теореме о промежуточных значениях непрерывной функции в силу (11) , (12) найдется точка , в которой что вместе с равенством (13) доказывает теорему .
Теперь, так как то по доказанной теоремою
где - некоторая точка . Подставляя полученное в , приходим к формуле трапеций с остаточным членом :
(14)
Формула Симпсона . Предположим, что Интеграл приближенного заменяем площадью заштрихованной криволинейной трапеции, ограниченной сверху параболой, проходящей через точки де
Указанная парабола задается уравнением
в чем нетрудно убедиться, положив поочередно (ее можно также получить, построив интерполяционный многочлен второй степени и приводя подобные ) Отсюда находи ( проверить самостоятельно)
Таким образом , формула Симпсона , называемая также формулой парабол , имеет вид
(15)
Положим где -функция (4). Поскольку
то согласно формул Тейлора с остаточным членом в интегральной форме имеем
Отсюда получаем
(16)
т.к. остальные члены взаимно уничтожаются.
Поскольку то применяя к интегралу (16) теорему 1 , а затем к полученному результату лемму, находим
(17)
где нектрые точки.
Принимая во внимание, что из (16), (17) приходим к формуле
(18) т.е. к формуле Симпсона с остаточным членом.
Рассмотрим квадратурные формулы прямоугольников (3), трапеций (7) и Симпсона (15) называются каноничными.
Усложненные квадратурные формулы.
На практике, если требуется вычислить приближенно интеграл (1) , обычно делят заданный отрезок на равных частей и на кождом частичном отрезке применяют какую-либо одну каноничную квадратурную формулу, а затем суммируют полученные результаты. Построенная таким путем квадратурная формула на отрезке называется усложненной. При применении формул прямугольников и трапеций длину частичных отрезков удобно применять за , а при использовании формулы Симпсона - за .
Остановимся сначала на применении формулы прямоугольников. Пусть Обозначим частичные отрезки через
где
В соответствии с (3) полагаем
(19)
где значение в середине частичного отрезка . При этом справедливо аналогичное (6) равенство
(20) где некоторая точка.
Суммирование по всем частичным отрезкам приближенного равенства (19) приводит к усложненной квадратурной формуле прямоугольников:
(21)
а суммирование равенств (20) с учетом того,что по лемме
где -некоторая точка отрезка , дает усложненную формулу прямоугольников с остаточным членом:
Рекомендуем скачать другие рефераты по теме: ответы школа, свобода реферат.
Категории:
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата