Линейное программирование: постановка задач и графическое решение
| Категория реферата: Рефераты по математике
| Теги реферата: реферат мыло, кредит реферат
| Добавил(а) на сайт: Ростислав.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
2. Обобщение графического метода решения задач линейного программирования.
Вообще, с помощью графического метода может быть ре-шена задача линейного программирования, система ограниче-ний которой содержит n неизвестных и m линейно независи-мых уравнений, если N и M связаны соотношением N – M = 2.
Действительно, пусть поставлена задача линейного программирования.
Найти минимальное значение линейной функции Z = С1х1+С2х2+... +СNxN при ограничениях
a11x1 + a22x2 + ... + a1NХN = b1
(2.3) a21x1 + a22x2 + ... + a2NХN = b2
. . . . . . . . . . . . . . . aМ1x1 + aМ2x2 + ... + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
где все уравнения линейно независимы и выполняется cоотношение N - M = 2.
Используя метод Жордана-Гаусса, производим M исключений, в результате которых базисными неизвестными оказались, например, M первых неизвестных х1, х2, ..., хM, а свободными - два последних: хМ+1, и хN, т. е. система ограничений приняла вид
x1 + a1,М+1xМ+1 + a1NХN = b1
(2.4) x2 + a2,М+1xМ+1 + a2NХN = b2
. . . . . . . . . . . . xМ + aМ, М+1x2 + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
С помощью уравнений преобразованной системы выражаем линейную функцию только через свободные неизвестные и, учитывая, что все базисные неизвестные - неотрицательные: хj 0 (j = 1, 2, ..., M), отбрасываем их, переходя к системе ограничений, выраженных в виде неравенств. Таким образом, окончательно получаем следующую задачу.
Найти минимальное значение линейной функции Z = СМ+1хМ+1+СNxN при ограничениях
a1,М+1xМ+1 + a1NХN b1 a2,М+1xМ+1 + a2NХN b2
. . . . . . . . . . aМ,М+1xМ+1 + aМNХN bМ
xМ+1 0, хN 0
Преобразованная задача содержит два неизвестных; решая ее графическим
методом, находим оптимальные значения xМ+1 и хN, а затем, подставляя их в
(2.4), находим оптимальные значения х1, х2, ..., хM.
Пример.
Графическим методом найти оптимальный план задачи ли-нейного
программирования, при котором линейная функция Z = 2х1 - х2 + х3 - 3х4 +
4х5 достигает максимального значения при ограничениях
х1 - х2 + 3х3 - 18х4 + 2х5 = -4
2х1 - х2 + 4х3 - 21х4 + 4х5 = 2
3х1 - 2х2 + 8х3 - 43х4 + 11х5 = 38
xj 0 (j = 1, 2, ..., 5)
Решение.
Рекомендуем скачать другие рефераты по теме: 7 ответов, шпаргалки по социологии.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата