Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
| Категория реферата: Рефераты по математике
| Теги реферата: инновационный менеджмент, правовые рефераты
| Добавил(а) на сайт: Текуса.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
а) Интеграл Шварца для круга
Как известно, по данным значениям вещественной (мнимой) части функции находится с точностью до чисто мнимого слагаемого. Аналитический аппарат, дающий выражение функции [pic], регулярной в области, через значения [pic] на контуре, в том случае, когда область есть круг радиуса [pic], известен – это есть так называемый интеграл Шварца [6, 8, 9]:
[pic] , ([pic], [pic]) (18)
Полагая здесь [pic], мы найдем для [pic] чисто вещественное значение
[pic], для которого мнимая часть обращается в нуль в начале координат.
Чтобы получить общее решение, мы должны добавить к правой части произвольное мнимое число [pic]:
[pic], [pic]. (19)
Отделим в (18) вещественную и мнимую части, так как вещественная
[pic]
часть даст нам интеграл Пуассона для [pic] и мнимая же часть доставляет выражение [pic] через [pic].
Для единичного круга [pic], имеет вид:
[pic], (20)
где [pic], [pic] - представляет значение вещественной части искомой функции в точке [pic].
б) Интегральная формула Пуассона.
Задача Дирихле об определении значений гармонической функции внутри круга, если известны ее значения на границе, решается, как известно, интегралом Пуассона:
[pic], (21) где [pic] - полярные координаты точки, где ищется значение решения; [pic] - радиус окружности и [pic] - функция полярного угла [pic], дающая граничные значения [pic] [9].
Можно проверить разложением в ряд Тейлора, что
[pic],
([pic], [pic])
Поэтому [pic] представима рядом:
[pic]
[pic] (22) где [pic] и [pic] - коэффициенты Фурье [pic]:
[pic]; [pic]; [pic]
В центре окружности при [pic] мы получаем:
[pic] (23)
Равенство (23) – теорема Гаусса о том, что значение гармонической функции в центре окружности есть среднее арифметическое ее значений на самой окружности.
Рекомендуем скачать другие рефераты по теме: налоги в россии, решебник по математике 5.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата