Производная и ее применение в алгебре, геометрии, физике
| Категория реферата: Рефераты по математике
| Теги реферата: новейшие рефераты, ресурсы реферат
| Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
так как, по предыдущему, φ = limα.
Исключая случай φ = π/2,
в силу непрерывности тангенса имеем: tg(limα) = lim tgα.
Поэтому tgφ = lim tgα.
По формуле (VI) для СМ (черт.) имеем:
tgα=(f(x+Δx) -f (x))/Δx
Переходя к пределу при Δx→0 (точка М при Δx→ 0 неограниченно приближается к С, а угол α→φ), имеем:
lim tg α =lim((f(x+Δx)-f(x))/Δx)=f '(x). Δx→0 Δx→0 |
tgφ=f '(x) |
Следовательно, (IV)
Геометрический смысл производной
1°. Справедлива обратная теорема, выражающая геометрический смысл производной: если функция y=f(x) имеет определенную производную в точке х, то:
1) в этой точке имеется касательная к графику функции,
2) угловой коэффициент ее равен значению производной f '(x) в точке х.
Д о к а з а т е л ь с т в о. По условию, существует предел отношения Δy/Δx. Но отношение Δу/Δx есть тангенс угла секущей СМ (черт.).
lim tgα = tg(limα) Δ x→0 Δ x→0 |
Значит, согласно условию, существует
Из равенства (1) следует:
α=arctg(Δy/Δx).
Вследствие непрерывности арктангенса, имеем:
Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата