Рациональные уравнения и неравенства
| Категория реферата: Рефераты по математике
| Теги реферата: сочинения по литературе, курсовая работа на тему право
| Добавил(а) на сайт: Митькин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
принимает вид x2 + (b / a)x + (c / a) = (x + (b / 2a))2.
Отсюда следует, что при D = 0 уравнение ax2 + bx + c = 0 имеет один корень кратности 2: X1 = – b / 2a
3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение
x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))
является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение
x2 + (b / a)x + (c / a) = 0
не имеет действительных корней. Не имеет их и уравнение ax2 + bx + c = 0.
Таким образом, для решения квадратного уравнения следует вычислить дискриминант
D = b2 – 4ac.
Если D = 0, то квадратное уравнение имеет единственное решение:
X=-b / (2a).
Если D > 0, то квадратное уравнение имеет два корня:
X1=(-b + Ö D) / (2a); X2= (-b - Ö D) / (2a).
Если D < 0, то квадратное уравнение не имеет корней.
Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:
b = 0; c ¹ 0; c / a 0;X1 = (- 5 + Ö 33) / 4; X2 = (- 5 -Ö 33) / 4.
Ответ: X1 = (- 5 + Ö 33) / 4; X2 = (- 5 -Ö 33) / 4.
Пример 3.10. Решить уравнение x3 – 5x2 + 6x = 0
Решение. Разложим левую часть уравнения на множители x(x2 – 5x + 6) = 0,
отсюда x = 0 или x2 – 5x + 6 = 0.
Решая квадратное уравнение, получаем X1 = 2 , X2 = 3.
Ответ: 0; 2; 3.
Пример 3.11.
x3 – 3x + 2 = 0.
Рекомендуем скачать другие рефераты по теме: первый снег сочинение, научный журнал.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата