Различные подходы к определению проективной плоскости
| Категория реферата: Рефераты по математике
| Теги реферата: цивилизация реферат, человек реферат
| Добавил(а) на сайт: Karantirov.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Доказательство: p n удовлетворяет б) для четных n и удовлетворяет а) для нечетных n Þ на П выполняются оба свойства а) и б), то есть П удовлетворяет П1 и П2. Если P,Q,R неколлинеарны на p 0, значит, П3, тоже выполняется.
Покажем, что в П каждая прямая содержит хотя бы три точки.
Каждая прямая из П определяется двумя точками.
По П2: " две прямые имеют общую ()
Пусть l: í P1,P2ý , m: í P3,Р4ý ; по П2: lÇ m=P5Þ P5Î l, P5Î m
Получим, каждая прямая содержит хотя бы три точки.
Все аксиомы проективной плоскости выполняются Þ П- проективная плоскость.
Определение: Ограниченной конфигурацией называется конфигурация, у которой каждая () принадлежит не менее чем трем прямым, а каждая прямая содержит не менее трех различных точек.
Пример: Конфигурация теоремы Дезарга ограничена.
Предложение 2: " конечная ограниченная конфигурация из П содержится в p 0.
Доказательство: Уровнем () РÎ П мы назовем наименьшее n³ 0,такое, что РÎ p n. Уровнем прямой LÍ П мы назовем наименьшее n³ 0, такое, что LÇ p n - прямая.
Пусть S - ограниченная конечная конфигурация из П, и пусть n- максимальный из уровней всех точек и всех прямых из S .
Предположим, что n - уровень какой-то прямой LÍ S (Если максимальный уровень достигается для точки, то доказательство аналогично).
Тогда lÇ p n - прямая, а lÇ p n-1 не является прямой. Если n=0, то все доказано, S Í p 0. Предположим, что n>0. Тогда l возникла как прямая, соединяющая две () из p n-1, не принадлежащие в p n-1 одной прямой. Но в S уровень всех точек £ n, а значит, они принадлежат p n, то есть l содержит не более двух таких точек. Полученное противоречие и доказывает наше предложение.
Пример: Недезаргова проективная плоскость.
Пусть p 0 состоит из четырех точек и не содержит ни одной прямой, П- свободная проективная плоскость порожденная p 0.
В качестве следствия из предыдущего предложения получаем, что П бесконечно; следовательно," прямая содержит бесконечно много точек. Значит можно выбрать четыре () О,А,В,С, " три из которых неколлинеарны, и затем А’на ОА, B' на ОВ, С’ на ОС так, что они образуют семь различных точек, причем A’,B’,C’ неколлинеарны. Тогда построим Р=АВÇ А’В’, Q=ACÇ A’C’, R=BCÇ B’C’. Все 10 точек различны. Если теорема Дезарга была бы не верна на П, то P,Q,R принадлежали бы одной прямой, Þ 10 () и 10 прямых образовали бы ограниченную конфигурацию; но тогда она должна была бы содержаться в p 0, а p 0 содержит всего лишь четыре точки.
Построили геометрию, удовлетворяющую аксиомам П1-П4 и не удовлетворяющую П5, тем самым показали, что П5 не является следствием П1-П4.
3.5. Принцип двойственностиЗаймемся изучением свойств проективной плоскости, вытекающих из аксиом П1-П4.
Предложение: Пусть П - проективная плоскость, П*- множество прямых плоскости П; назовем еще пучок прямых плоскости П прямой из П*.(здесь П*- это множество элементов из П, называемых прямыми; пучком прямых называется совокупность всех прямых, проходящих через некоторую фиксированную точку- центр пучка). Тогда П* тоже является проективной плоскостью (назовем ее двойственной к П проективной плоскостью); при этом, если П удовлетворяет аксиоме П5, то и П* ей удовлетворяет.
Следствие (принцип двойственности).
Пусть S- некоторое утверждение, касающееся проективной плоскости П, которое может быть выведено из аксиом П1-П4 (соответственно П1-П5). Тогда "двойственное" утверждение S*, полученное из S заменой слов.
точка Û прямая
лежит на Û проходит через
коллинеарные Û сходящиеся
Рекомендуем скачать другие рефераты по теме: конспект урока 8 класс, шпаргалка егэ.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата