Ряды
| Категория реферата: Рефераты по математике
| Теги реферата: отчет о прохождении практики, дипломы шуточные
| Добавил(а) на сайт: Сергеев.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Рассмотрим случай: y’’+py’+qy=f(x), p,q – числа. y=c1y1+c2y2+y*, где y1, y2 – два лин-но незав. реш.
(1) y’’+ py’+qy=0 – лин. однород дифф. ур-ие 2ого порядка.
y=ekx k2+pk+q=0 – характерист. ур-ие ур-ия (1).
Рассмотрим 3 случия:
1. D>0, k1,2=(-p±Ö(p2-4q))/2, k1¹k2 y1=ek1x, y2=ek2x.
Т.к. y1/y2¹const, то y=c1 ek1x+c2 ek2x.
2. D=0 k1,2=-p/2
y1=e-px/2, y2=y1∫(e--∫pdx)/y12dx=e-px/2, y=e-px/2(c1+c2x).
3.Когда корни комплексные, т.е. D<0, k1,2=a±bi, y1=eaxCosbx, y2=eaxSinbx, y1/y2¹const, y=eax(c1Cosbx+c2Sinbx)
Неоднородные ур-ия со спец. правой частью.
1. f(x)=Pn(x)eax 1) a - не явл-ся корнем хар. ур-ия
y*=(A0xn+A1xn-1 ++...+An)=Qn(x)eax.
a - однократный корень y*=xQn(x)eax.
3) a - двукрат. корень y*=x2Qn(x)eax.
2. f(x)=p(x)eaxCosbx+q(x)eaxSinbx
1) a+bi – не корень y*=U(x)eaxCosbx+V(x)eaxSinbx.
2) a+bi – корень y*=x[U(x)eaxCosbx+V(x)eaxSinbx].
3. f(x)=MCosbx+NSinbx
1)bi – не корень, y*=ACosbx+BSinbx.
2)bi – корень, y*=x(ACosbx+BSinbx).
РЯДЫ
Числовые ряды. Основные определения.
Пусть дана бесконечная послед-ть чисел U1, U2...Un,... Выражение U1+U2+...+Un+... наз-ся числовым рядом,
U1, U2...Un – члены ряда.
Сумма конечного числа n первых членов ряда наз-ся
Рекомендуем скачать другие рефераты по теме: бесплатные ответы, недвижимость реферат.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата