Теория математической статистики
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные 2 класс, физика и техника
| Добавил(а) на сайт: Назар.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Вопрос о кореляции между переменными будучи решен положительно не означает наличия более общего вида связи (заработная плата учителям и количество поступивших в ВУЗы после окончания школы). Если мы проводим идентификацию групп с различным средним, наличие кореляции не исключено, но возможно другое объяснение взаимосвязи, чем вытекающее их эксперимента. Отсутствие связи при нулевом коэффициента Пирсона означает всего лишь отсутствие линейной связи.
Дисперсия суммы и разности переменных Предсказание и оцениваниеПеременная, которую мы хотим оценить называется зависимой переменной или откликом , обозначим ее через y.
Переменная которую мы используем для оценки называется независимой переменной или фактором, ее обозначим через x.
Конкретная характеристика (переменная x) имеющаяся в нашем распоряжении, позволяет получить до проведения эксперимента значение y, зависимой переменной. Мы получаем используя xi и коэффициенты b1 и b0.
Даже при наилучшем линейном предсказании, предсказание будет отличаться от реального yi на какую-то величину, которую мы назовем ошибкой оценки и обозначим ei:
Точность предсказания зависит от того, насколько удачно подобраны коэффициента b1 и b0. Критерием успешности подбора коэффициентов является минимальная величина суммы квадратов всех ошибок оценки – критерий наименьших квадратов
Другой критерий: . Этот критерий приводит к медианой линии регрессии. Из уравнения следует
Исходя из минимизации формулы наименьших квадратов найдем формулы:
;Наше исследование получается наиболее результативным, если мы предполагаем, что фактор и отклик имеют двумерные нормальные распределения.
Свойства двумерного нормального распределения
1. Выборочные средние отклика (y) для каждого значения x лежат на прямой;
2. Для любого значения x, соответствующие значения y нормально распределены;
3. Для любого значения x, y – имеют одинаковую дисперсию .
При прогнозировании является ли среднее ошибок оценки подходящей мерой для прогнозирования.
Средняя ошибка оценки всегда равна нулю. Один из способов доказать этот факт, это выбрать в качестве меры прогнозирования дисперсию ошибки оценки.
Стандартная ошибка оценки
Стандартную ошибку оценки применяют для определения пределов, в окрестности предсказанного попадает фактическое значение yi.
В приделах Se – расположено 69% фактических значений объекта, в приделах 2Se – 95%, в приделах 3Se – 97,5%.
Рекомендуем скачать другие рефераты по теме: математика, ответ 2.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата