Устойчивость систем дифференциальных уравнений
| Категория реферата: Рефераты по математике
| Теги реферата: курсовые работы, скачать сочинение
| Добавил(а) на сайт: Глинин.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
называется производной V в силу уравнения (1). Справедлива формула
, (3)
где — решение уравнения (1) с начальными данными .
Определение. Функция Ляпунова , не зависящая от t, называется определенно-положительной, если в области G при . Функция Ляпунова называется определенно-положительной, если существует определенно-положительная функция такая, что . Функция Ляпунова называется определенно-отрицательной, если — определенно-положительная функция.
Определение. Функция Ляпунова называется положительной, если в области G и отрицательной, если в G.
Таким образом, функцию Ляпунова, тождественно равную в G нулю, можно рассматривать и как положительную, и как отрицательную.
Отметим следующее свойство определенно-положительных и определенно-отрицательных функций: если , то . (4)
Импликация в (4) вытекает непосредственно из определения функций Ляпунова. Чтобы обосновать импликацию , рассмотрим произвольную последовательность , , для которой при . Покажем, что при . Предположим, что это неверно. Тогда найдется подпоследовательность и положительное число такие, что . Согласно определению , где — определенно-положительная функция. Положим . Множество компактно, поэтому по теореме анализа , где , следовательно, . Тогда , что противоречит свойству последовательности .
3.2. Теоремы второго метода Ляпунова.
Теорема 1. Пусть существует определенно-положительная функция Ляпунова , такая, что DV есть отрицательная функция. Тогда решение уравнения (1) устойчиво по Ляпунову.
Доказательство. Пусть — произвольная положительная постоянная, . Положим при . Так как V определенно-положительная, то . По l найдем такое, чтобы . Рассмотрим решение при . Покажем, что
. (5)
Пусть (5) не имеет места. Тогда существует такое, что , а при . В силу (3) и условия теоремы функция является при невозрастающей функцией t. Так как , то , тогда тем более , что противоречит определению T и тому, что . Таким образом, импликация (5) имеет место, а это и означает по определению устойчивость решения по Ляпунову. Теорема доказана.
Следствие. Если уравнение (1) имеет в области G определенно-положительный интеграл, не зависящий от t и уничтожающийся в начале координат, то решение устойчиво по Ляпунову.
Теорема 2. Пусть существует определенно-положительная функция Ляпунова , такая, что DV определенно-отрицательная при . Тогда решение уравнения (1) асимптотически устойчиво.
Доказательство. Условия теоремы 1 выполнены, и решение устойчиво по Ляпунову. Следовательно, существует такое, что
при . (6)
Из определения асимптотической устойчивости в силу (4) заключаем, что достаточно доказать импликацию при . В силу (3) и условия теоремы — строго убывающая функция t.
Предположим, что теорема неверна. Тогда
. (7)
Отсюда, из (6) и (4) следует, что при . По условию теоремы , где — определенно-положительная функция. Пусть . Из (3) следует, что при всех , что противоречит определенной положительности . Полученное противоречие доказывает теорему.
В случае когда уравнение автономно, условия теоремы (2) можно ослабить.
Теорема 3. Пусть уравнение (1) автономно, выполнены условия теоремы 1 и множество не содержит целиком полных траекторий уравнения (1), за исключением положения равновесия . Тогда решение асимптотически устойчиво.
Доказательство. Используем доказательство теоремы 2 до формулы (7) включительно. Далее, пусть — -предельная точка траектории . Из определения -предельной точки и (7) следует, что . По первому свойству предельных множеств (п. 1.3.) все точки траектории являются -предельными для траектории . Следовательно, для всех t, при которых определено решение , . Отсюда и из (3) следует, что при указанных t , что противоречит условию теоремы, так как не совпадает с началом координат. Теорема доказана.
Пример. Рассмотрим уравнение движения диссипативной системы с одной степенью свободы , где удовлетворяют условию Липшица при , удовлетворяет условию при и при . Докажем, что положение равновесия асимптотически устойчиво.
Рекомендуем скачать другие рефераты по теме: решебник по физике, работа реферат.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата