
Устойчивость систем дифференциальных уравнений
| Категория реферата: Рефераты по математике
| Теги реферата: курсовые работы, скачать сочинение
| Добавил(а) на сайт: Глинин.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
В следующих двух леммах будут построены квадратичные формы, являющиеся функциями Ляпунова для линейного уравнения
(10)
и удовлетворяющие условиям теорем 2 и 4.
Лемма 2. Пусть
все собственные числа матрицы A
имеют отрицательные вещественные части, —
определенно-отрицательная квадратичная форма. Тогда уравнение (8) имеет
единственное решение
, являющееся определенно-положительной квадратичной формой.
Лемма 3. Пусть
матрица A имеет
собственные числа с положительными вещественными частями. Тогда можно подобрать
такое, что существует
единственное решение
уравнения
,
причем если —
определенно-положительная квадратичная форма, то область
для квадратичной формы
непуста.
Докажем теперь теоремы 5 и 6 пункта 2.6. Рассмотрим уравнение (1), у которого
(11)
где удовлетворяет условию
(12)
равномерно по .
Теорема 5 (см.
теорему 5 п. 2.6). Если все собственные числа матрицы A имеют отрицательные вещественные части
и удовлетворяет условию (12), то решение
уравнения (1)
асимптотически устойчиво.
Доказательство. Построим функцию Ляпунова, удовлетворяющую условию теоремы 2 для линейного уравнения (10), и покажем, что она удовлетворяет условиям теоремы 2 и для уравнения (1).
Пусть — квадратичная форма, удовлетворяющая уравнению
.
По лемме 2 определенно-положительная. Определим ее
производную DV в силу
уравнения (1). Из (2) и (11) имеем:
. Отсюда получаем:
. (13)
Из (12) следует, что для любого можно указать
такое, что при
выполняется
. Так как
— квадратичная форма, то
,
, и
. Очевидно также, что
. Из (13) и записанных неравенств следует, что
. Следовательно, DV — определенно-отрицательная функция при
, если a
выбрать по
. Итак, выполнены все условия теоремы 2, откуда следует, что
решение
уравнения (1)
асимптотически устойчиво. Теорема 5 доказана.
Теорема 6. (см.
теорему 6 п. 2.6). Если среди собственных чисел матрицы имеются такие, вещественные
части которых положительны, и выполнено условие (12), то решение уравнения (1)
неустойчиво.
Доказательство.
С помощью леммы 3 построим квадратичную форму , удовлетворяющую уравнению
, и такую, что область
для функции V непуста. Составим DV в силу уравнения (1).
Имеем
.
Используя (12), как и при доказательстве теоремы 5, покажем, что если a достаточно мало, то при
функция
. Следовательно, так как в области
, то при
,
имеем
. Таким образом, выполнены все условия теоремы 4, откуда и
следует, что нулевое решение уравнения (1) неустойчиво. Теорема доказана.
Список литературы
Метод функций Ляпунова в анализе динамики систем. Сб. статей. Новосибирск: Наука, 1987.
Рекомендуем скачать другие рефераты по теме: решебник по физике, работа реферат.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата