Задача обработки решеток
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: сочинения по литературе, доклад на тему
| Добавил(а) на сайт: Анфуса.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Граница и внутренняя часть конечного измеримого множества не зависит от частного выбора нормы вектора [15]. Кроме того, поскольку Р и Е являются выпуклыми множествами, особенно просто охарактеризовать их внутренний части и границы.
Граница Р, обозначаемая [pic], состоит из тех положительных полиномов, которые равны нулю для некоторых [pic]. Внутренняя часть Р, обозначаемая [pic], состоит из тех полиномов, которые строго положительны на К.
Положительные полиномы могут быть использованы для определения границы и внутренней части Е. Граница Е, обозначаемая [pic], состоит из тех продолжимых корреляционных векторов, которые превращают в нуль внутреннее произведение с некоторым ненулевым положительным полиномом. Внутренняя часть Е, обозначаемая [pic], состоит из тех корреляционных векторов, которые делают строго положительными внутренние произведения с каждым ненулевым положительным полиномом.
1.3.1 Функции спектральной плотности мощности
Многие методы спектральной оценки представляют спектр мощности не как
меру, а в виде функции спектральной плотности. Это ведет к модификации
задачи продолжимости: если задана фиксированная положительная конечная мера
[pic], которая определяет интеграл
[pic] (3.9)
то какие корреляционные векторы [pic] могут быть произведены от некоторой
строго положительной функции [pic]? При одном дополнительном ограничении на
[pic], которое легко удовлетворяется на практике, модно показать, что
векторы, которые могут быть представлены таким образом, являются векторами, находящимися во внутренней части Е. Кроме того, можно показать, что любой
век
тор во внутренней части Е может быть представлен в форме /3.9/ для
некоторой непрерывной, строго положительной [pic].
Теорема продолжимости для функций спектральной плотности:
Если каждое соседство каждой точки в К имеет строго положительную [pic]-
меру, то
1/если [pic] равномерно ограничена относительно нуля по К, то
[pic];
2/если [pic], то
[pic]
для некоторой непрерывной, строго положительной функции [pic].
Доказательство этой теоремы содержится в Приложении А.
1.3.2 Дискретизация спектральной основы
Многие представляющие интерес спектральные основы содержат бесконечное число точек. Эти спектральные основы следует часто аппроксимировать в вычислительных алгоритмах посредством конечного числа точек. Поэтому важно понимать эффекты такой аппроксимации.
Рассмотрим дискретную спектральную основу
[pic] (3.10)
Мера [pic] на дискретной основе полностью характеризуется ее значением
[pic] в каждой точке. Итак, обратный интеграл -Фурье сводится к конечной
сумме
[pic] (3.11)
Аналогично, для санкций спектральной плотности
[pic] (3.12)
Мера [pic] может считаться определяющей квадратурное правило для интегралов по спектральной основе.
Из определений продолжимых векторов корреляции и положительных
полиномов можно заметить, что, если спектральная основа образуется
посредством выбора конечного числа- точек из некоторой исходной
спектральной основы, то новое множество Е является выпуклым многогранником, вписанным внутрь исходного множества Е, а новое множество Р является
выпуклым многогранником, описанный вокруг первоначального множества Р.
Следовательно, новое Е меньше исходного Е, а новое Р больше исходного Р.
Достаточно плотная выборка исходной спектральной основы приведет к
многогранникам, которые аппроксимируют исходные множества с произвольной
точностью. Например, на рис.5 показан эффект аппроксимации спектральной
основы [pic] четырьмя выборками [pic] для [pic]. Исходные конусы Е и Р
имеют круговое поперечное сечение при [pic], как показано на рис.3. Конусы, соответствующие выборочной основе имеют /оба/ квадратное поперечное
сечение. Границы новых и старых конусов пересекаются у векторов, соответствующих точкам выборки.
1.4 Метод Писаренко
Писаренко описал метод спектральной оценки временной
последовательности, в котором спектр моделируется в виде суммы импульсов
штос компонента белого шума [5]. Если компонента белого шума выбирается
настолько большой, насколько это возможно, то, как он показал, положение и
амплитуды импульсов, необходимые для согласования измеренных корреляций, определяются единственным образом. Метод Писаренко будет выведен для более
обшей ориентации ИП и для более общей шумовой компоненты. Связь метода
Писаренко с вопросом продолжимости будет продемонстрирована.
Рекомендуем скачать другие рефераты по теме: дипломная работа методика, диплом вуза, скачать дипломную работу на тему.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата