Теория вероятности
| Категория реферата: Рефераты по статистике
| Теги реферата: ответы 10 класс, контрольная 1
| Добавил(а) на сайт: Филофей.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
[pic]
Таким образом, только в 16-ти случаях из 100 доставленная в магазин стандартная продукция окажется из четвертой партии.
Применение формулы Байеса позволяет переоценить вероятности гипотез по результатам испытаний, в следствие которых появилось событие Е.
Достоинство формулы Байеса в том, что она может применяться при отсутствии сведений о числе элементарных исходов, достаточно знать вероятности или частости событий.
8. Независимые события. Биномиальное распределение.
Предположим событие Е во всех случаях имеет одну и ту же вероятность
[pic], тогда вероятность противоположного события будет так же постоянна и
может определяться по формуле [pic].
Такой подход позволяет рассматривать практически любое пространство элементарных событий, как дихотомное (то есть состоит из противоположных событий).
Допустим, необходимо определить вероятность появления события Е ровно k раз в n независимых испытаниях. В этом случае событие противоположное Е произойдет n-k раз. Отобрать k-элементов из n можно различными способами, каждый из которых несовместное событие, появление которого это результат игры случая.
В математике доказано, что число различных комбинаций из n элементов по k определяется по формуле:
[pic], ! это произведение натурального ряда чисел, каждое из которых больше предыдущего на 1 (начиная с 1).
[pic]
В соответствии с теоремой умножения вероятностей вероятность появления одной из возможных комбинаций определяется по формуле:
[pic]
[pic]
Формула, которая определяет вероятность появления события Е k-раз в n- независимых испытаниях, называется формулой Бернулли. А схема отбора из дихотомной совокупности схемой Бернулли (или схемой возвращаемого шара или схемой повторного отбора).
Пример: Для обслуживания покупателей супермаркета в час пик без очередей должно работать не менее 6 контролеров-кассиров из 8. Вероятность отсутствия одного из работников составляет 0,1. Найти вероятность работы расчетно-кассового узла без очередей.
[pic]
Поскольку нас устраивает работа 6, 7, 8 кассовых кабин, то вероятность появления одного из этих несовместных событий будет определяться по формуле сложения вероятностей. Каждая из этих вероятностей может определяться по формуле Бернулли.
[pic]
Таким образом, в 96 случаях из 100 очередей не будет.
Если при фиксированной численности n-повторного отбора из дихотомной совокупности изменять величину k, то полученное распределение вероятности будет называться биномиальным. Поскольку его ординаты представляют собой элементы разложения бинома [pic].
[pic]
Число наступления событий в n-независимых испытаниях называется наивероятнейшим, если этому числу соответствует наибольшая вероятность.
[pic]
При этом если k смешанное число, то в результате выбирается ближайшее к этому смешанному числу, но меньше его, целое число.
Рекомендуем скачать другие рефераты по теме: банк рефератов и курсовых, шпаргалки по гражданскому праву, контрольные работы по алгебре класс.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата