Методы решения уравнений, содержащих параметр
| Категория реферата: Рефераты по математике
| Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
| Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата
Описанный метод очень нагляден. Кроме того, в нем находят применение почти все основные понятия курса алгебры и начал анализа. Задействуется весь набор знаний, связанных с исследованием функции: применение производной к определению точек экстремума, нахождение предела функции, асимптот и т. д. (см. [1], [5], [23]).
Пример. При каких значениях параметра уравнение имеет два корня?
Решение. Переходим к равносильной системе
Из графика видно, что при уравнение имеет 2 корня.
Рис. 4 |
Ответ. При уравнение имеет два корня.
Пример. Найдите множество всех чисел , для каждого из которых уравнение имеет только два различных корня.
Решение. Перепишем данное уравнение в следующем виде:
Теперь важно не упустить, что , и – корни исходного уравнения лишь при условии . Обратим внимание на то, что график удобнее строить на координатной плоскости . На рисунке 5 искомый график – объединение сплошных линий. Здесь ответ «считывается» вертикальными прямыми.
Ответ. При , или , или .
Опытное преподавание
Программа факультативных занятий на тему «Методы решения уравнений, содержащих параметр».
Курс лучше изучать в 11 классе, так как уравнения такого вида содержат задания итоговой аттестации. Курс рассчитан на систематизацию методов решения уравнений, содержащих параметр и их классификацию. Все методы, рассмотренные в данной работе, рассматривать на факультативах не имеет смысла. Необходимо рассмотреть основные методы решения наиболее часто встречаемых на выпускных и вступительных экзаменах, а именно, методы решения квадратных уравнений, линейных, аналитический и графический методы и методы решения уравнений методом исследования области значения функции.
Цели факультатива:
познакомить учащихся с некоторыми методами решения уравнений, содержащих параметр;
показать применение различных методов при решении уравнений одного типа;
формировать умение видеть рациональный метод для решения конкретных типов уравнений, содержащих параметр;
формировать логическое мышление;
формировать настойчивость, целеустремленность, трудолюбие через решение сложных задач;
развивать математическую речь с присущей ей краткостью, точностью и лаконичностью;
подготовить учащихся к поступлению в ВУЗы.
Планирование:
Данный курс рассчитан на 16 часов. Занятия проводятся по два часа. В эти часы не входит время, предоставленное для проверки знаний и умений и повторения.
Краткое содержание занятий
Занятие № 1.
Тема: Параметр и решение линейных уравнений и простейших квадратных уравнений с параметром.
Оно проведено и рассмотрено в опытном преподавании.
Занятие № 2.
Тема: Квадратные уравнения. Дискриминант. Старший коэффициент.
Цель занятия: познакомить учеников с методом исследования дискриминанта и старшего коэффициента квадратных уравнений, содержащих параметр.
Литература для учителя: см. [1],[6],[18],[21],[22].
Литература для ученика: см. [21], [22]
Краткое содержание: относительно знака дискриминанта и старшего коэффициента определить количество корней и найти их, определить при каких значениях параметра функция касается осей координат. Использование таблицы № 1 (стр. 38) при решении уравнений.
Занятие № 3.
Тема: Квадратные уравнения. Расположение корней.
Цель занятия: научить находить место расположение корней уравнения относительно некоторой точки или двух точек.
Литература для учителя: см. [1],[6],[18],[21],[22].
Литература для ученика: см. [21], [22]
Краткое содержание: используются теорема Виета (корни уравнения удовлетворяют системе ) и вершина параболы, для определения расположения корней относительно некоторых точек координатной оси.
Занятие № 4.
Тема: Аналитический метод. Метод «ветвлений».
Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр.
Литература для учителя: см. [1] , [5], [6], [7], [14]
Литература для ученика: см. [3]
Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению многочленов или выделение полного квадрата. Составление системы логических следований, при которых используется один из выше приведенных способов упрощения уравнения.
Занятие № 5.
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Категории:
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата