Методы решения уравнений, содержащих параметр
| Категория реферата: Рефераты по математике
| Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
| Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата
Рассмотрим функцию . Вершина параболы – есть точка с координатами . Минимум функции есть значение ординаты вершины параболы. Поэтому можем утверждать, что параметр принимает значения в отрезке на отрезке .
Ответ.
Замечание: другой способ решения будет рассмотрен позднее (см. пункт 4.2.4).
Пример. Решить уравнение .
Важно показать при изучении параметров связь параметра с конкретными значениями и эта задача показывает эту связь. Цель этой задачи в том, чтобы показать что задачи, не содержащие параметр, можно решать и способами решения уравнений, содержащих параметр. Решение этого уравнения показывает, что исследования различных решений с параметрами позволяет решать задачи более простыми методами.
Решение. Это уравнение равносильно системе
Представим уравнение системы в виде квадратного уравнения относительно числа 5.
Откуда, учитывая , получаем
Ответ. .
Методы поиска необходимых условий . Использование симметрии аналитических выражений
В тех случаях, когда непосредственный поиск значений переменной затруднен, можно сначала выделить необходимые условия, а затем от необходимых условий перейти к достаточным условиям.
Будем называть задачи, решаемые таким методом, задачами с поиском необходимых условий.
Необходимые условия задач этого пункта:
В каждой задаче обязательно фигурирует аналитическое выражение, геометрический образ которого имеет ось или плоскость симметрии.
Во всех задачах в той или иной форме присутствует требование единственности решения.
Если описываемые задачи имеют решением координаты точки М, то найдется симметричная точка М1, координаты которой тоже являются решением, тогда точка М должна лежать (в силу единственности решения) на оси симметрии, но заметим, что это требование не является достаточным.
Высказанные соображения и составляют основу одного из метода поиска необходимых условий, о котором будет идти речь в следующих задачах (см. [1], [5], [12]).
Пример. При каких уравнение имеет одно решение.
Решение. При замене на (и наоборот) уравнение не меняет смысла, поэтому если точка с координатами – решение то и – решение. А так как в условии необходимо единственность решения, то .
Тогда . Так как , то , что возможно только для случая равенства и при . Тогда получаем . Откуда находим два корня уравнения, а в силу единственности, дискриминант приравниваем к нулю и получаем .
Ответ. При уравнение имеет одно решение.
«Каркас» квадратичной функции. Дискриминант, старший коэффициент.
Фактически все важные свойства квадратичной функции определяются таблицей. Где – конструируют «каркас», на котором строится теория квадратичной функции (см. [1], [2], [5], [7], [8], [18], [21], [22])
Категории:Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |