Обработка результатов экспериментов и наблюдений
| Категория реферата: Рефераты по математике
| Теги реферата: темы рефератов по психологии, изложение язык
| Добавил(а) на сайт: Яницкий.
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата
Рис. 4. Интегральный закон распределения дискретной случайной величины
Для дискретной случайной величины
F (x) = P (X ( x) = P ((( ( X ( x) = [pic],
[pic]где суммирование распространяется на хi ( х. В промежутке между двумя
последовательными значениями Х функция F (х) постоянна. При переходе
аргумента х через значение хi F (х) скачком возрастает на величину p (Х (
хi).
Рассмотрим p (х1 ( Х ( х2). Если х2 ( х1, то очевидно, что p (Х ( х2) ( p (Х ( х1) ( p (х1 ( Х ( х2).
Тогда
p (х1 ( Х ( х2) ( p (Х ( х2) ( p (Х ( х1) ( F (х2) ( F (х1),
т.е. вероятность попадания случайной величины в интервал (х1( х2) равен разности значений интегральной функции граничных точек.
Последнее условие можно использовать для нахождения вероятности p (Х
( х1) для непрерывной случайной величины. Для этого рассмотрим предел
p (X = x1) = [pic],
т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.
Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х ( х1 ( где х1( заранее выбранное число) равна нулю, это событие не является невозможным.
Рассмотрим непрерывную случайную величину Х, интегральный закон которой предполагается непрерывным и дифференцируемым. Функцию
( (х) ( F( (х)
называют дифференциальным законом распределения или плотностью вероятности
случайной величины Х. Из определения производной можно записать
( (x) = F( (x) = [pic],
т.е. плотность вероятности случайной величины Х в точке х равна пределу отношения вероятности попадания величины Х в интервал (х; х ( (х) к (х, когда (х стремится к нулю.
Используя понятия интегральной функции распределения и определенного интеграла можно записать
( (x) = F( (x) или F (x) = p (x1 < X < x2) = [pic].
Это соотношение имеет простое геометрическое толкование (рис. 5).
Если [pic] определяет заштрихованную область в соответствующих пределах, то p (х ( Х ( х ( (х) ( ( (х) (х.
Рис. 5. Геометрический смысл дифференциальной функции распределения
Из свойств интегрального распределения следует
[pic].
Зная дифференциальный закон распределения можно определить интегральный закон распределения
F (x) = [pic].
2. Числовые характеристики случайных величин, заданных своими распределениями
Основными характеристиками случайной величины, заданной своими распределениями, является математическое ожидание ( или среднее значение ) и дисперсия.
Рекомендуем скачать другие рефераты по теме: конспект, онлайн решебник.
Категории:
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата