Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами
| Категория реферата: Рефераты по математике
| Теги реферата: реферати українською, возрождение реферат
| Добавил(а) на сайт: Pogrebnjak.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата
Для этого достаточно установить, что ряд справа равномерно сходится. Прежде всего, оценим . Имеем
откуда
Оценим теперь . По неравенству С.Н.Бернштейна,
Пользуясь этой оценкой, получаем:
Но
Поэтому
(6.21)
Итак, доказана сходимость ряда , а вместе с этим установлена и формула (6.20). Из (6.20) и (6.21) вытекает, что
и теорема доказана.
В некоторых случаях оценка (6.18) может быть упрощена. Пусть, например,
(6.22)
Тогда
Поэтому при выполнении условия (6.22) вместо (6.18) можно написать
Следствие 10.1. Пусть r-натуральное число и сходится ряд
Тогда
(6.23)
Теорема 11. Пусть r-натуральное число и для функции f сходится ряд
Тогда для любого натурального k и любого
(6.24)
Доказательство. Имеем
Отсюда, по лемме 10,
Далее, согласно теореме 10,
Воспользуемся теперь леммой 9. Получаем
Заметим, что
Таким образом, если , то
и теорема доказана.
§7. Основная теорема.
Обратимся теперь к рассмотрению следующего вопроса: каковы необходимые и достаточные условия того, чтобы
где -заданная невозрастающая функция?
Насколько нам известно, эта задача не была до сих пор решена даже для случая . Мы решим её для функций сравнения .
Лемма 11. Пусть и для некоторого натурального
(7.1)
Рекомендуем скачать другие рефераты по теме: аристотель реферат, международный реферат.
Категории:
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата