Теорема Безу
| Категория реферата: Рефераты по математике
| Теги реферата: bestreferat ru, реферат скачать без регистрации
| Добавил(а) на сайт: Aleksandrin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
= 27a +9b -117 =0
Решим систему уравнений :
8a + 4b – 44 = 0
27a + 9b – 117 = 0
2a + b = 11
3a + b = 13
Отсюда получаем : a = 2 , b = 7 .
Ответ: a = 2 , b = 7 .
Пример 5.
При каких значениях a и b многочлен x4 + ax3 – 9x2 + 11x + b делится без остатка на трёхчлен x2 – 2x + 1 ?
Представим делитель так : x2 – 2x + 1 = (x – 1)2
Данный многочлен делится на x – 1 без остатка , если по теореме Безу
R1 = P4 (1) = 1 + a – 9 + 11 + b = a + b + 3 = 0.
Найдём частное от деления этого многочлена на x – 1 :
_ x4 + ax3–9x2 + 11x–a –3 x – 1 x4 – x3 x3+(a+1)x2+(a–8)x+(a+3)
_(a + 1)x3 – 9x2
(a + 1)x3 – (a + 1)x2
_(a – 8)x2 + 11x
(a – 8)x2 – (a –8)x
_(a + 3)x – a – 3
(a + 3)x – a – 3
0
Частное x3+(a+1)x2+(a–8)x+(a+3) делится на (x –
1) без остатка , откуда
R2 = P3 (1) = 1 + (a + 1)*1 +(a – 8)*1 + a+3 =
=3a – 3 = 0 .
a + b + 3 = 0
3a – 3 = 0
Рекомендуем скачать другие рефераты по теме: алгебра, контрольные работы по алгебре класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата