Теория вероятности и мат статистика
| Категория реферата: Рефераты по математике
| Теги реферата: реферат вода, шпаргалка рф
| Добавил(а) на сайт: Vit.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
[pic] и равно сумме комбинаций исходов первого и второго испытаний.
Вероятность сложного события A.
[pic], т.е. результаты второго испытания не зависят от результатов первого.
Если в результате второго испытания произошло событие Qj, а в результате первого испытания могло произойти все что угодно, то сложное событие B имеет вид: [pic].
Вероятность сложного события B равна сумме вероятностей комбинаций вида
EiQj, i=1, ..., m1
[pic], т.к. исходы первого испытания не влияют на исходы второго испытания. Из факта: P(AB)=P(A)P(B/A); P(B/A)=P(B); AB=EiQj (надо доказать)
A={EiQ1, EiQ2, ..., EiQj, ..., EiQm2}
B={E1Qj, E2Qj, ..., EiQj, ..., Em1Qj}
По определению произведения AB в него входят только те события, которые
входят и в A, и в B. Из приведенных выше формул следует, что только событие
EiQj входит и в A, и в B, то AB= EiQj. Следует:
[pic]
Композиционное пространство имеет вид: [pic]
Общая структура независимых событий в композиционном пространстве, порожденном композицией испытаний:
[pic] т.е. в результате первого испытания произошли элементарные события:
[pic].
В результате второго испытания события: [pic].
Сложное событие B определяет все возможные комбинации исходов двух испытаний независимо друг от друга. В результате первого испытания произошли элементарные события: [pic].
В результате второго испытания события: [pic].
Тогда: [pic]
[pic], т.к. второе испытание не влияет на результаты первого.
[pic] т.к. [pic], (надо доказать) то [pic]
При решении практических задач, связанных с независимыми испытаниями обычно не требуется строить композиционных пространств элементарных событий, а использовать формально неверную запись: P(A(B)=P(A)(P(B).
Композиция n испытаний.
Имеется n испытаний. Зададим для i-го испытания вероятностное пространство:
[pic] i=1, ..., n
Композицией n испытаний называется сложное испытание, состоящее в совместном проведении n испытаний. Задается n испытаний, вероятностное пространство каждого из которых имеет вид:
[pic] i=1, ..., n
Рекомендуем скачать другие рефераты по теме: доклад по истории на тему, сочинение базаров.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата