Неопределенные бинарные квадратичные формы
| Категория реферата: Рефераты по математике
| Теги реферата: дипломная работа по экономике, конспект урока
| Добавил(а) на сайт: Ливия.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Предложение 5. Для имеет место следующая оценка сверху:
,
где — постоянная
Доказательство. Имеем:
Последняя сумма геометрически представляет собой число целых точек в первой четверти, лежащих на или под гиперболой , при этом целые точки, лежащие на осях координат, исключаются, так как для них . Поэтому исследуемую сумму можно записать в виде:
, где — целая часть числа
Оцениваем теперь сумму:
,
где
Здесь мы воспользовались следующим соотношением из математического анализа
,
где
—
есть так называемая постоянная Эйлера.
Предложение 5 доказано.
Перейдем теперь к элементарному доказательству следующего результата.
Теорема (Зигель). Для числа всех приведенных неопределенных бинарных квадратичных форм дискриминанта справедливо неравенство
,
где — произвольное положительное число, — постоянная, зависящая только от .
Доказательство. Пусть — неопределенная приведенная форма дискриминанта . Тогда ,
,
Оценим сверху число приведенных форм с и . Тогда
Применяя к последней сумме предложения 3,4,5, получим:
Рекомендуем скачать другие рефераты по теме: ответы по математике, как написать дипломную работу.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата