Неопределенные бинарные квадратичные формы
| Категория реферата: Рефераты по математике
| Теги реферата: дипломная работа по экономике, конспект урока
| Добавил(а) на сайт: Ливия.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
, где
Теорема доказана.
О диагональных формах и оценка снизу числа классов в роде
В этом параграфе мы получим одну оценку снизу для числа классов в роде неопределенных бинарных квадратичных форм. Сначала введем соответствующие понятия.
Определение 1. Целое число , не делящееся на простое число , называется квадратичным вычетом по модулю простого числа, если число сравнимо с квадратом некоторого целого числа по модулю , т.е. — квадратичный вычет по модулю , если сравнение имеет решение; в противном случае число называется квадратичным невычетом по модулю . В теории квадратичных вычетов очень полезно использование так называемого символа Лежандра.
Определение 2. Символом Лежандра числа по простому модулю , которое определяется следующим соотношением:
Приведем некоторые основные свойства символа Лежандра, которые нам понадобятся.
Свойство 1 . , если
Свойство 2 . Если , то (свойство периодичности)
Свойство 3 . (свойство мультипликативности)
Свойство 4 . , если
Определим теперь понятие рода квадратичных форм, впервые введенное Гауссом. Совокупность классов собственно примитивного порядка данного дискриминанта Гаусс в своей арифметической теории квадратичных форм разделяет на ряды, относя в один и тот же род все те классы, формы которых имеют и тот же «характер». Под характером примитивной формы или примитивного класса форм Гаусс понимает следующее.
Пусть — простой делитель дискриминанта , и пусть число всех этих различных модулей равно . Можно показать, что если — один из этих модулей, то для всех чисел , представимых данной собственно примитивной формой дискриминанта и взаимно простых с , символы Лежандра имеют одно и то же значение. В самом деле, пусть
— собственно примитивная форма дискриминанта и — любой нечетный простой делитель числа , и , — два числа, представляемых формой и не делящихся на . Подстановка определителя переводит в форму (см. соотношения (3) §1), причем , откуда , т.е. в силу определения символа Лежандра имеем . Из этого равенства в очередь на основании свойств 3 и 4следует, что .
Символ Лежандра имеет одно и то же значение для всех чисел , представляемых формой . Выпишем эти символы Лежандра, которые все равны или для всех указанных модулей , взятых в определенном выбранном порядке.
Тогда для данной квадратичной формы получается некоторая определенная последовательность чисел, равных . Эта последовательность чисел, равных , и называется характером рассматриваемой собственно примитивной бинарной квадратичной формы дискриминанта или характером класса этой формы.
Так как число всех различных последовательностей, составленных из членов, равных или равно , то число различных характеров форм данного дискриминанта, а следовательно, и число родов не больше, чем . Чтобы решить вопрос о точном числе родов, Гаусс вводит в рассмотрение операции композиции классов и композиции родов квадратичных форм.
Не вдаваясь в эту сложную теорию Гаусса, мы приведем его результаты о числе родов и о числе классов в каждом роде.
Каждый род собственно примитивного порядка содержит одно и то же число классов,
Рекомендуем скачать другие рефераты по теме: ответы по математике, как написать дипломную работу.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата