Алгебраические расширения полей
| Категория реферата: Рефераты по математике
| Теги реферата: диплом купить, банк курсовых работ бесплатно
| Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Определение. Пусть a — алгебраический элемент над полем P. Минимальным полиномом элемента a, над P называется нормированный полином из P[x] наименьшей степени, корнем которого является a. Степень минимального полинома называется степенью элемента a над P.
Легко видеть, что для всякого элемента a, алгебраического над P , существует минимальный полином.
Предложение 1.3. Если а — алгебраический элемент над полем P, а g и j — его минимальные полиномы над P, то g=j.
Доказательство. Степени минимальных полиномов g и j совпадают. Если g ¹ j, то элемент a (степени n над P) будет корнем полинома g - j, степень которого меньше степени полинома j (меньше n), что невозможно. Следовательно, g=j.
Теорема 1.4. Пусть a — алгебраический элемент степени n над полем P (aóP) и g — его минимальный полином над P. Тогда:
(а) полином g неприводим в кольце P [x];
(b) если f (a) = 0, где f 0 P[x], то g делит f;
(с) фактор-кольцо P [x]/(g) изоморфно кольцу P [a];
(d) P [x]/(g) является полем;
(е) кольцо P [a] совпадает с полем P (a).
Доказательство. Допустим, что полином g приводим в кольце P [x], т. е. существуют в P[x] такие полиномы j и h, что
g = jh, 1£deg j, deg h<deg g = n.
Тогда g(a) = j(a)h(a) = 0. Так как P (a) — поле, то j( a) = О или h(a) = 0, что невозможно, поскольку, по условию, степень элемента a над P равна п.
Предположим, что f 0 P[x] и f(a) = 0. По условию, g(a) = 0. Следовательно, f и g не могут быть взаимно простыми. Поскольку полином g неприводим, то g делит f.
Пусть j — гомоморфизм кольца P [x] на кольцо P [a] (y(f)=f(a) для всякого f из P[x]), рассмотренный в теореме 2.1. В силу (Ь) ядро гомоморфизма y состоит из кратных полинома g, т.е. Кег y = (g). Следовательно, фактор-кольцо P = P [x]/(g) изоморфно кольцу P [a].
Поскольку P[a]ÌP(a), то P [a] есть область целостности. Так как P @ P[a], то фактор-кольцо P также есть область целостности. Нам надо показать, что любой ненулевой элемент f из P обратим в P. Пусть f — элемент смежного класса f. Так как f ¹ 0, то f(a)¹0; поэтому полином g не делит полином f. Поскольку полином g неприводим, отсюда следует, что полиномы f и g — взаимно простые. Следовательно, в Р[x] существуют такие полиномы u и v, что uf + vg=1. Отсюда вытекает равенство uf = 1, показывающее, что элемент f обратим в кольце P. Итак, установлено, что фактор-кольцо P является полем.
В силу (с) и (d) P [a] является полем и поэтому P(a)ÌP[a]. Кроме того, очевидно, P[a]ÌP(a). Значит, P[a] = P(a). Следовательно, кольцо P [a] совпадает с полем P (a).
1.3.Строение простого алгебраического расширения поля.
Теорема 1.5. Пусть a — алгебраический над полем P элемент положительной степени n. Тогда любой элемент поля P(a) однозначно представим в виде линейной комбинации n элементов 1, a, ..., an-1 с коэффициентами из Р.
Доказательство. Пусть b— любой элемент поля P (a). По теореме 1.4, P(a) = P[a]; следовательно, существует в P[x] полином f такой, что
(1) b = f(a).
Пусть g — минимальный полином для a над P; в силу условия теоремы его степень равна п. По теореме о делении с остатком, существуют в P[x] полиномы h и r такие, что
(2) f = gh + r, где r = 0 или der r < der g = n , т. е. r=c0+c1x +…cn-1xn-1 (ci0P). Полагая в (2) x = а и учитывая равенство (1), имеем
(3) b = c0+c1a +…cn-1an-1
Покажем, что элемент b однозначно представим в виде линейной комбинации элементов 1, a, ..., an-1. Пусть
(4) b = d0+d1a +…dn-1an-1 (di 0 P)
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата