Алгебраические расширения полей
| Категория реферата: Рефераты по математике
| Теги реферата: диплом купить, банк курсовых работ бесплатно
| Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
g=(2x-1)(-1/2x+1/4)+5/4.
Откуда находим
(2x-1)=p+g(x+1),
5/4=g-(p+g(x+1))(-1/2x+1/4)
или
p1/5(2x-1)+g(4/5+1/5(2x2+x-1))=1,
p1/5(2x-1)+g(2/5x2+1/5x+3/5)=1.
Таким образом,
y(x)= (2/5x2+1/5x+3/5).
Тогда
y(a)=y()=.
Следовательно
.
2.Составное алгебраическое расширение поля.
2.1. Конечное расширение поля.
Пусть P — подполе поля F. Тогда мы можем рассматривать F как векторное пространство над P, т. е. рассматривать векторное пространство +F, +, {wl½l 0P},,
где wl- операция умножения элементов из F на скаляр l0P.
Определение. Расширение F поля P называется конечным, если F, как векторное пространство над P, имеет конечную размерность. Эта размерность обозначается через [F : P].
Предложение 2.1. Если a — алгебраический элемент степени n над P, то [P (a):P]=n.
Это предложение непосредственно следует из теоремы 1.5.
Определение. Расширение F поля P называется алгебраическим, если каждый элемент из F является алгебраическим над P.
Теорема 2.2. Любое конечное расширение F поля P является алгебраическим над P.
Доказательство. Пусть n-размерность F над P. Теорема, очевидно, верна, если n = 0. Предположим, что n>0. Любые n+1 элементов из F линейно зависимы над P. В частности, линейно зависима система элементов 1, a, ..., an, т. е. существуют в P такие элементы с0, с1,…,cn не все равные нулю, что с0×1+ с1a+…+cn an = 0.
Следовательно, элемент a является алгебраическим над P.
Отметим, что существуют алгебраические расширения поля, не являющиеся конечными расширениями.
2.2. Составное алгебраическое расширение поля.
Расширение F поля P называется составным, если существует
возрастающая цепочка подполей L i поля F такая, что
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата