Алгебраические расширения полей
| Категория реферата: Рефераты по математике
| Теги реферата: диплом купить, банк курсовых работ бесплатно
| Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
P = L0 L1 … Lk= F и k>1.
Теорема 2.3. Пусть F — конечное расширение поля L и L — конечное расширение поля P. Тогда F является конечным расширением поля P и
[F : P] = [F : L]@[ L : P].
Доказательство. Пусть
(1) a1,…,am — базис поля L над P (как векторного пространства) и
(2) b1,…,bn — базис поля F над L . Любой элемент d из F можно линейно выразить через базис:
(3) d = l1b1+...+lnbn (lk 0L).
Коэффициенты 1k можно линейно выразить через базис (1):
(4) lk = p1k a +…+ pmk am (pik0P).
Подставляя выражения для коэффициентов lk в (3), получаем
d = å pik aibk.
i0{1,…,m}
k0{1,…,n}
Таким образом, каждый элемент поля F представим в виде линейной комбинации элементов множества B, где
B = { a ibk½{1,..., m}, k 0 {l,..., n}}.
Отметим, что множество B состоит из nm элементов.
Покажем, что B есть базис F над полем P. Нам надо показать, что система элементов множества B линейно независима. Пусть
(5) åcikaibk = 0,
I,k
где cik 0 P. Так как система (2) линейно независима над L , то из (5) следуют равенства
(6) с1ka 1+...+сmka m = 0 (k = 1,..., n).
Поскольку элементы a 1, ..., a m линейно независимы над P, то из (6) следуют равенства
c1k = 0,…,cmk = 0 (k = 1, ..., n),
показывающие, что все коэффициенты в (5) равны нулю. Таким образом, система элементов B линейно независима и является базисом F над P.
Итак установлено, что [F , P] = nm = [F: L]×[L: P]. Следовательно, F является конечным расширением поля P и имеет место формула (I).
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата