Алгебраические расширения полей
| Категория реферата: Рефераты по математике
| Теги реферата: диплом купить, банк курсовых работ бесплатно
| Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
—любое такое представление. Рассмотрим полином j
j = (с0 – d0) + (c1 - di.)x + . . . + (сn-1 –dn-1)xn-1
Случай, когда степень j меньше n, невозможен, так как в силу (3) и (4) j(a) = 0 и степень j меньше степени g. Возможен лишь случай, когда j = 0, т. е. с0 = d0, . . . , сn-1 = dп-1. Следовательно, элемент b однозначно представим в виде линейной комбинации элементов 1, a,…,an-1.
1.4.Освобождение от алгебраической иррациональности в знаменателе дроби.
1 над полем P; f и h — полиномы из кольца полиномов P [x]и h(a) ¹0. Требуется представить элемент f(a)/h(a)0P(a) в виде линейной комбинации степеней элемента a, т. е. в виде j(a),где j0P[x].
Эта задача решается следующим образом. Пусть g — минимальный полином для a над P. Так как, по теореме 1.4, полином неприводим над P и h(a) ¹ 0, то g не делит h и, значит, полиномы h и g — взаимно простые. Поэтому существуют в P[x] такие полиномы u и v, что
uh+vg=1 (1)
Поскольку g(a) = 0, из (1) следует, что
u(a)g(a) = 1, 1/h(a) = u(a).
Следовательно, f(a)/h(a) = f(a)u(a), причем f,u 0P[x] и f(a)u(a)0P[a]. Итак, мы освободились от иррациональности в знаменателе дроби f(a)/h(a) .
Пример.
Освободиться от иррациональности в знаменателе дроби
.
Решение. В нашем случае a=. Минимальным многочленом этого числа является
p(x)=x3-2.
Многочлены p(x) и g(x)=-x2+x+1 взаимно просты. Поэтому существуют такие многочлены j и y, что
pj+gy=1.
Для отыскания j и y применим алгоритм Евклида к многочленам p и g:
-x3-2 -x2+x+1 -x2+x+1 2x-1
x3-x2-x -x-1 -x2+1/2x -1/2x+1/4
x2+x-2 1/2x+1
x2-x-1 1/2x-1/4
2x-1 5/4
Таким образом,
p=g(-x-1)+(2x-1),
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата