Множина комплексних чисел
| Категория реферата: Рефераты по математике
| Теги реферата: шпоры на пятках, решебник
| Добавил(а) на сайт: Максимов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Чернігівський державний педагогічний університет імені Т.Г.Шевченка фізико-математичний факультет
Курсова робота на тему:
Множина комплексних чисел
Підготувала студентка 45 групи
Петрова Наталія Олександрівна
Чернігів 2003
План
1. Виникнення та розвиток поняття комплексного числа.
2. Поняття комплексного числа.
3. Дії над комплексними числами.
4. Геометричне зображення комплексного числа.
5. Модуль і аргумент комплексного числа.
6. Тригонометрична форма комплексного числа.
7. Застосування комплексних чисел.
Виникнення та розвиток поняття комплексного числа.
“Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространение”
Ф. Клейн.
Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.
В III веке Архимед разработал систему обозначения вплоть до такого
громадного как [pic]. Наряду с натуральными числами применяли дроби -
числа, составленные из целого числа долей единицы. В практических расчетах
дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем
Вавилоне. Долгое время полагали, что результат измерения всегда выражается
или в виде натурального числа, или в виде отношения таких чисел, то есть
дроби. Древнегреческий философ и математик Пифагор учил, что “… элементы
чисел являются элементами всех вещей и весь мир в целом является гармонией
и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным
одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со
стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для
того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание
утверждать, что именно с этого открытия начинается эра теоретической
математики: открыть существование несоизмеримых величин с помощью опыта, не
прибегая к абстрактному рассуждению, было невозможно.
Следующим важным этапом в развитии понятия о числе было введение
отрицательных чисел - это было сделано китайскими математиками за два века
до н. э. Отрицательные числа применяли в III веке древнегреческий математик
Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже
подробно изучили индийские ученые, которые сравнивали такие числа с долгом.
С помощью отрицательных чисел можно было единым образом описывать изменения
величин. Уже в VIII веке было установлено, что квадратный корень из
положительного числа имеет два значения - положительное и отрицательное, а
из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа
[pic], чтобы [pic].
В XVI веке в связи с изучением кубических уравнений оказалось
необходимым извлекать квадратные корни из отрицательных чисел. В формуле
для решения кубических уравнений вида [pic] кубические и квадратные корни:
[pic].[pic]
Эта формула безотказно действует в случае, когда уравнение имеет один
действительный корень ([pic]), а если оно имеет три действительных корня
([pic]), то под знаком квадратного корня оказывалось отрицательное число.
Получалось, что путь к этим корням ведет через невозможную операцию
извлечения квадратного корня из отрицательного числа. Вслед за тем, как
были решены уравнения 4-й степени, математики усиленно искали формулу для
решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX
веков доказал, что буквенное уравнение пятой степени [pic] нельзя решить
алгебраически; точнее: нельзя выразить его корень через буквенные величины
a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой
природы. Он показал, что система уравнений [pic], не имеющая решений во
множестве действительных чисел, имеет решения вида [pic], [pic], нужно
только условиться действовать над такими выражениями по правилам обычной
алгебры и считать что [pic]. Кардано называл такие величины “чисто
отрицательными” и даже “софистически отрицательными”, считал их
бесполезными и старался их не употреблять. В самом деле, с помощью таких
чисел нельзя выразить ни результат измерения какой-нибудь величины, ни
изменение какой-нибудь величины. Но уже в 1572 году вышла книга
итальянского алгебраиста Р. Бомбелли, в которой были установлены первые
правила арифметических операций над такими числами, вплоть до извлечения из
них кубических корней. Название “мнимые числа” ввел в 1637 году французский
математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков
XVIII века - Л. Эйлер предложил использовать первую букву французского
слова imaginaire (мнимый) для обозначения числа [pic] (мнимой единицы).
Этот символ вошел во всеобщее употребление благодаря К. Гауссу . Термин
“комплексные числа” так же был введен Гауссом в 1831 году. Слово комплекс
(от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.
Рекомендуем скачать другие рефераты по теме: сочинение бульба, реферат на экологическую тему.
Категории:
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата